Recommender Systems – Teil 3: Personalisierte Empfehlungssysteme, Machine Learning und Evaluation
Algorithmen für personalisierte Empfehlungen
Nicht immer hinterlassen Nutzer ausreichend personalisierte Informationen entlang ihrer Customer Journey. Beispielsweise können neue Nutzer hinzukommen oder bestehende Kunden beim Surfen von Online-Angeboten nicht angemeldet sein. Nicht personalisierte Empfehlungssysteme, wie der Vorschlag häufig gemeinsam gekaufter Produkte, bieten Unternehmen in diesem Fall trotzdem Möglichkeiten für Empfehlungen. Je individueller diese jedoch auf den Kunden zugeschnitten werden, desto besser. Deshalb werden im Folgenden Verfahren vorgestellt, die deutlich stärker personalisiert sind und die Präferenzen der Kunden erlernen. Zum Verständnis dieser Methoden ist es hilfreich, sich das Problem als dünnbesetzte Matrix vorzustellen.








