In business intelligence, "quality" is always a key topic but dealt with in a variety of ways. This is due to a lack of a consistent understanding in this area, and consequent absence of a standardized approach to BI quality.
That this is becoming increasingly problematic is also signified by renaming of the current Gartner Quadrant. Data quality "tools" are now called data quality "solutions". The reason: Whereas many manufacturers now proclaim to be bearers of "quality", the common denominator for this is usually infinitesimally small: To find, understand and solve problems. To their credit, this is still the source of all technical progress according to the philosopher Karl Popper. However, it does not yet necessarily have anything to do with data quality per se. In this article, I will therefore sort out and structure the topic of BI quality somewhat, and accordingly call the whole thing "BI quality management". This leaves plenty of scope for "total BI quality management", as applied and taught in the engineering disciplines for some time now.